TED UNIVERSITY, COURSE SYLLABUS

Course Code & Number	CMPE201	Course Title	Discrete Structures of Mathematics
Type of Course	☑ Compulsory □ Elective	Semester2021-2022 ☑ Fall □ Spring □ Summer	
Course Credit Hours	(3+0+0) 3	Number of ECTS Credits	6
Pre-requisite	N/A	Co-requisite	N/A
Mode of Delivery	☑ Face-to-face □ Distance learning	Language of Instruction	☑ English □ Turkish
Course Coordinator		Course Lecturer(s)	Venera Adanova Room B151 Aslı Gençtav Room A433 Elif Kurtaran Özbudak Room A429
Required Reading	Rosen, Discrete Mathematics and Its Applications, 7 th ed. ISBN: 978-0-07-338309-0	Recommended Reading	Discrete and combinatorial mathematics: an applied introduction. R.P. Grimaldi. Fifth Edition. ISBN: 0321211030

Course Catalog Description	Logic. Theorems and proofs. Set theory. Relations and functions. Mathematical induction. Rules of counting, permutation, combination and binomial coefficients. Pigeonhole principle. Discrete probability. Graphs and trees.	
Course Objectives	The objective of this course is to provide an understanding of the fundamental mathematical structures of computer science, describe common proof techniques and establish a background for future theory courses.	
Course Learning Outcomes	 Upon successful completion of this course, students will be able to Identify the logical statements and argumentation in regular languages Understand the propositional and predicate logic. Learn basic proof techniques and strategies Express and analyze set theory Understanding the complexity analysis of algorithms Understand the basics of number theory (congruence, Cryptography,) Induction proof and recursive structures. Count entities using rules of counting, combination and permutation Graphs, Trees and traversal techniques Modeling Computation; Finite-State Machines; Turing Machines. 	

Course Contents	Logic. Theorems and proofs. Set theory. Relations and functions. Mathematical induction. Rules of counting, permutation, combination and binomial coefficients. Pigeonhole principle. Discrete probability. Graphs and trees. Modeling Computation; Finite-State Machines; Turing Machines.
-----------------	---

Teaching Methods & Learning Activities	 ☑ Telling/Explaining ☑ Discussions/Debates ☑ Questioning ☑ Reading □ Peer Teaching □ Scaffolding/Coaching □ Demonstrating ☑ Problem Solving □ Inquiry □ Collaborating □ Think-Pair-Share □ Predict-Observe-Explain □ Microteaching □ Case Study/Scenario Analysis 	□ Simulations & Games □ Video Presentations □ Oral Presentations/Reports □ Concept Mapping □ Brainstorming □ Drama/Role Playing □ Seminars □ Field Trips □ Guest Speakers ☑ Hands-on Activities □ Service Learning □ Web Searching □ Experiments □ Other(s):	
Assessment Methods (Formal & Informal)	 ☑ Test/Exam ☑ Quiz/Homework □ Oral Questioning □ Performance Project □ Written □ Oral 	 Observation Self-evaluation Peer Evaluation Portfolio Presentation (Oral, Poster) Other(s): 	

Student Workload (Total 184 Hrs)	 ✓ Lectures	 Resource Review
--	-------------------------------	------------------------------------

COURSE ASSIGNMENTS

A. Midterm I [22 %]

B. Midterm II [23 %]

C. Quizzes [15%]

There will be three quizzes, each quiz worth 5% of the overall grade.

D. Homework [%10]

There will be two take-home assignments each worth 5% of the overall grade.

D. Final [30%]

COURSE POLICIES

I. Attendance

Attendance to the course is mandatory. The students attending less than 70% (25 hours) of lecture hours will get FX grade.

II . Missed Work

Makeup for the midterm exam will be provided if the student can provide a legal document confirming a life threatening health issue at the time of the exam, or with the consensus of the CMPE faculty.

There will be no makeup for presentations, quizzes and the final exam.

III. Late Assignment Submission Policy

Late submissions more than 2 days will not be graded. Each late day imposes 20% penalty of the total homework grade.

IV. Extra Credit

Extra credits will not be offered.

V. Assignment Rules

All assignment works must be done individually. A student can submit only one work. In case of multiple submissions, only the latest submission will be considered. Students cannot submit work on other students' behalf.

VI. Plagiarism

All of the following are considered plagiarism:

- 1. turning in someone else's work as your own
- 2. copying words or ideas from someone else without giving credit
- 3. failing to put a quotation in quotation marks
- 4. giving incorrect information about the source of a quotation
- 5. changing words but copying the sentence structure of a source without giving credit
- 6. copying so many words or ideas from a source that it makes up the majority of your work, whether you give credit or not" (<u>www.plagiarism.org</u>)

Plagiarism is a very serious offense and will be penalized accordingly by the university disciplinary committee. The best way to avoid accidentally plagiarizing is to work on your own before you ask for the help of other resources.

VI. Cheating

Cheating has a very broad description which can be summarized as "acting dishonestly". Some of the things that can be considered as cheating are the following:

- Copying answers on examinations, homework and laboratory works,
- Using prohibited material on examinations,
- Lying to gain any type of advantage in class
- Providing false, modified or forged data in a report
- Plagiarizing
- Modifying graded material to be regraded.
- Causing harm to colleagues by distributing false information about an examination, homework or laboratory

Cheating is a very serious offense and will be penalized accordingly by the university disciplinary committee.

VII. Class Readings

Class readings are necessary but not mandatory. The material covered in class by your instructor will only provide a fundamental understanding of the general context. These materials alone are **definitely not** sufficient for learning the subject. If you are willing to effectively learn something, you must actively work on it yourself. Reading is one of the most successful ways of learning about a topic.

	TENTATIVE COURSE OUTLINE			
w	Day	Topics	Readings	Assignments
	04.10-10.10			
1	04.10-10.10	Fundamentals of logic	Sections 1.1-1.3	
2	11.10-17.10	Fundamentals of logic	Sections 1.4-1.5	
3	18.10-24.10	Quantifiers, Proof Methods	Sections 1.6-1.7	
4	25.10-31.10	Basic Structures of Discrete Math: Sets, Functions, Sequences, Sums, Matrices	Sections 2.1-2.4	
5	01.11-07.11	Algorithms, Complexity	Section 3.1-3.3	Quiz I HWI
6	08.11-14.11	Number Theory	Sections 4.1-4.6	HWI due
7	15.11-21.11	Induction and Recursion	Sections 5.1-5.4	Midterm I
8	22.11-28.11	Counting	Sections 6.1-6.5	
9	29.11-05.12	Recurrence Relations	Sections 8.1-8.5	Quiz II HW II
10	06.12-12.12	Relations; Equivalence Relations	Sections 9.1-9.6	HW II due
11	13.12-19.12	Graphs	Sections 10.1-10.5	Midterm II
12	20.12-26.12	Trees	Sections 11.1-11.4	
13	27.12-02.01	Discrete Probability	Section 7.1-7.3	Quiz III
14	03.01-09.01	Modeling Computation; Finite-State Machines; Turing Machines	Sections 13.1-13.5	

Prepared By & DateAslı Genctav Venera Adanova Elif Kurtaran Özbudak 17/09/2021	Revision Date	24/09/2021
---	---------------	------------