TED UNIVERSITY, COURSE SYLLABUS

Faculty	Engineering	Department	Computer Engineering
---------	-------------	------------	----------------------

Course Code & Number	CS 501	Course Title	Design&Analysis of Algorithms	
Type of Course	☑ Compulsory □ Elective	Semester	☑Fall □ Spring □ Summer	
Course Credit Hours	(3+0+0) 3	Number of ECTS Credits	7.5	
Pre-requisite		Co-requisite		
Mode of Delivery	☑ Face-to-face ☑ Distance learning	Language of Instruction	☑ English □ Turkish	
Course Coordinator	Dr. Ulaş GÜLEÇ	Course Lecturer(s)	Dr. Ulaş GÜLEÇ	
Required Reading	 Algorithm Design by Jon Kleinberg and Éva Tardos. Addison-Wesley, 2005. Algorithms 4/e by Robert Sedgewick and Kevin Wayne. Addison-Wesley Professional, 2011. 	Recommended Reading	 Introduction to Algorithms, Third Edition by Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. MIT Press, 2009. M. A. Weiss, Data Structures and Algorithm Analysis in Java, 3rd Edition, Pearson, 2012. 	

	Algorithm Design and Analysis, Sorting and Searching, Search Trees, Graphs,		
Course Catalog	Shortest Paths, Maximum Flow and Minimum Cut, Tries, Reductions, Intractability,		
Description	Algorithm Design Paradigms, Divide and Conquer, Greedy Algorithms,		
	Backtracking, Genetic Algorithms		
Course Objectives	The general objective of this course is to analyze the asymptotic performance of algorithms and understand algorithm design techniques. This course introduces familiarity with major algorithms and data structures make students apply important algorithmic design paradigms and methods of analysis. This course introduces the use of graphs in problem solving and algorithm development and describes how to develop algorithms using advanced graph data structures. Another objective of the course is to introduce different algorithm-design techniques, such as greedy, divide-		
	synthesize efficient algorithms in common engineering design situations.		

	 Upon successful completion of this course, students will be able to: 1. Analyze worst-case running times of algorithms using asymptotic analysis. 2. Understand graph-processing concepts to employ the major graph 			
	algorithms and their analyses in engineering problems.			
Course Learning	3. Recognize network flow problems, modeling and solving related problems.			
Course Learning	4. Understand data structures used in mathematical modelling of complex			
Outcomes	problems.			
	5. Understand divide-and-conquer, dynamic-programming, and greedy			
	algorithm paradigms to recite algorithms that employ these paradigms.			
	6. Analyze algorithms and data structure to measure their space complexity.			
	7. Recognize evolutionary algorithms and their applications.			

	⊠ Brainstorming	Hands-on Activities	□ Scaffolding / Coaching
	🖾 Case Study/Scenario	Inquiry	□ Seminars
	Analysis	□ Microteaching	□ Service Learning
	\boxtimes Collaborating	☑ Oral Presentations /	□ Simulations & Games
Learning	□ Concept Mapping	Reports	⊠ Telling / Explaining
Activities &	\boxtimes Demonstrating	□ Peer Teaching	□ Think-Pair-Share
Methods ¹	Discussions / Debates	□ Predict-Observe-	\Box Video Presentations
Wiethous	Drama / Role Playing	Explain	\boxtimes Web Searching
	\boxtimes Experiments	Problem Solving	\Box Other(s):
	□ Field Trips	□ Questioning	
	Guest Speakers	⊠ Reading	

	Case Studies / Homework	(30%)	Presentation (Oral, Poster)	(10%)
	□ Lab Assignment	(%)	🛛 Project	(20%)
Assessment	□ Observation	(%)	□ Quiz	(%)
Methods &	□ Oral Questioning	(%)	□ Self-evaluation	(%)
Criteria ²	□ Peer Evaluation	(%)	🖂 Test/Exam	(40%)
	□ Performance Project (Written, Oral)	(%)	□ Other(s):	(%)
	Portfolio	(%)		

	⊠ Case Study Analysis	(26 hrs)	□ Online Discussion	(hrs)
	Course Readings	(10 hrs)	\boxtimes Oral Presentation	(10 hrs)
	□ Debate	(hrs)	□ Poster Presentation	(hrs)
Student	□ Demonstration	(hrs)	□ Report on a Topic	(hrs)
Workload ³	⊠ Exams/Quizzes	(20 hrs)	Research Review	(30 hrs)
	□ Field Trips/Visits	(hrs)	□ Resource Review	(hrs)
	Hands-on Work	(70 hrs)	⊠ Team Meetings	(10 hrs)
	□ Lab Applications	(hrs)	□ Web Designs	(hrs)
	⊠ Lectures	(42 hrs)	□ Work Placement	(hrs)

 ¹ Multiple options possible.
 ² Multiple options possible. A percentage must be stated for the selected assessment method & criteria.
 ³ Multiple options possible. The student workload is found by multiplying the number and duration (hour) of the activity involved.

	□ Mock Designs	(hrs)	□ Worksho	р	(hrs)
	□ Observation	(hrs)	\Box Other(s):		(hrs)
			Tota	l Workload ⁴	218
Prepared By ⁵		Dr. Haydar ÇUI	KURTEPE	Date	04/24/2021
Revised By ⁶				Rev. Date	9/20/2022

GRADING
A. Midterm [30%]
One midterm exam that is worth 30% of the overall course grade.
B. Project [30%]
You will be given a project that includes designing and analyzing an algorithm.
The projects will be presented in the class. Presentations will be evaluated separately (%10 of 30)
C. Final Exam [40%]
One Final exam that is worth 40% of the overall course grade.

⁴ Computing the ECTS credits of a course: Total workload / 25 or 30 hours = ECTS credit and1 ECTS credit = 25-30 hours
⁵ It is the first person to prepare the course profile form and the first preparation date.
⁶ It is the person who revised the course profile form and the date of revision. It will be used if the course profile form is revised. In the new course proposal, this field will be left blank.

COURSE POLICIES

Attendance

Attending at least 70% of all lectures is mandatory.

Missed Work

Makeups for midterm exam will be provided if the student can provide a legal document confirming a life threatening health issue at the time of the exam, or with the consensus of the faculty.

Late Assignment Submission Policy

Late submissions will be graded with penalty.

Extra Credit

Extra credits will not be offered.

Assignment Rules

All assignment works must be done individually. A student can submit only one work. In case of multiple submissions, only the latest submission will be considered. Students cannot submit work on other students' behalf.

Plagiarism

All of the following are considered plagiarism:

- turning in someone else's work as your own
- copying words or ideas from someone else without giving credit
- failing to put a quotation in quotation marks
- giving incorrect information about the source of a quotation
- changing words but copying the sentence structure of a source without giving credit
- copying so many words or ideas from a source that it makes up the majority of your work, whether you give credit or not"

Plagiarism is a very serious offense and will be penalized accordingly by the university disciplinary

committee. The best way to avoid accidentally plagiarizing is to work on your own before you ask for the help of other resources.

Cheating

Cheating has a very broad description which can be summarized as "acting dishonestly". Some of the things that can be considered as cheating are the following:

- Copying answers on examinations, homework and laboratory works,
- Using prohibited material on examinations,
- Lying to gain any type of advantage in class
- Providing false, modified or forged data in a report
- Plagiarizing.
- Modifying graded material to be regraded.
- Causing harm to colleagues by distributing false information about an examination, homework or laboratory

Cheating is a very serious offense and will be penalized accordingly by the university disciplinary committee.

Class Readings

Class readings are necessary but not mandatory. The material covered in class by your instructor will only provide a fundamental understanding of the general context.

The reading materials will be provided by the instructor, at the relevant week.

	COURSE OUTLINE				
Week	Topics	Readings	Assignments, quizzes, and exams		
1	Introduction	Lecture notes	Introduction		
	Algorithmic Thinking		assignment		
	Karatsuba Multiplication				
2	Basics of Algorithm Analysis	Kleinberg – Ch 2	Problem set 1		
	- Computational Tractability	Lecture Notes			
	- Scientific AoA Approach				
	- Asymptotic Order of Growth				
	- Memory				
3	Sorting	Sedgewick – Ch 2	Projects out		
	- QuickSort Analysis		Problem set 2		
4	Searching	Sedgewick – Ch 3	Problem set 3		
	- Search Trees				
	- Hash Tables				
5	Graphs	Kleinberg – Ch 3	Project proposal due.		
	Strings	Sedgewick – Ch 5	Problem set 4		
	- Tries				
6	Greedy Algorithms I	Kleinberg – Ch 4 (4.1-3)	Problem set 5		
	- Interval scheduling				
	- Interval partitioning				
7	Greedy Algorithms II	Kleinberg – Ch 4 (4.4-8)	Problem set 6		
	- Shortest paths and MSTs	Sedgewick – Ch 4(4.3,			
	- Clustering	4.4)			
8	Divide and Conquer I	Kleinberg – Ch 5 (5.1)	Midterm		
	- Basics				

	- Sorting and selection		
9	Divide and Conquer II - Recurrence Relations - Master Theorem	Kleinberg – Ch 5 (5.2)	Problem set 7
10	Dynamic Programming - The Bellman-Ford Algorithm - Negative Cycles	Kleinberg – Ch 6 (6.2, 6.8) Sedgewick – Ch 4(4.4)	Project Progress due Problem set 8
11	Network Flow - Ford-Fulkerson - Max-flow Min-cut - Bipartite Matching Problem	Kleinberg – Ch 7 (7.1, 7.2, 7.5,7.6) Sedgewick – Ch 6	Problem set 9
12	Intractability I - P, NP, and NP-complete	Kleinberg – Ch 8	
13	Intractability II - Sequencing Problems - Graph Coloring	Kleinberg – Ch 8	Projects Due
14	Further Topics in Algorithms - Backtracking - Genetic Algorithms	Lecture Notes	Project presentations

Prepared By &	Dr. Haydar CUKURTEPE	Devision Data	Dr. Ulaş GÜLEÇ
Date	29.04.2021	Revision Date	20/09/2022